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Abstract °

The paper presents a fo±=alization of the princiyal concepts of

the block diagram approach in systems theory using set theory. The

development is axiomatic. Starting from Plesarovic's notion of a

general system as an n-ary relations (i) the concept of time is

introduced (ii) multi-variable input-output systems are formalized

and (iii) the evolution of such systems in time is studied both with

and without the property of non-anticipation, It is demonstrated .1 4
in the latter case that the concept of state naturally arises. ,
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Introduction
In the companion paper, Professor 1esarov-L indicates the existence

of a gulf between the block diagram analysis and.:the analysis of detailed

mathematical models for complex systems. Moreover, he suggests that

general systems theory can properly play a role in bridgingthis gap

"by preserving the simplicity of the bleck diagram while introducing

the precidion of mathematics." As to achieving this goal, he provides

us with several significant clues. Most important among these are

(i) that set theory is an appropriate mathematical vehicle (augmented

perhaps with some elementary concepts from abstract algebra) and (ii)

that fundamentally a system is a relation between input set and output

set. To these, we add (iii) essentially all systems of interest in

engineering exist and operate within some Teference-frame of time.

Wows if the gulf is genuinely to be bridged) it is apparent that

the principal concepts of the block diagrom point-cf-view must be

Incorporated into general systems theory. In fact, this must be carried

out very carefully so that one can move easily from the block diagram

to the general systems theory set-up. Ctherwise, the general systems

theory set--up certainly cannot sex.:e as a bridge in the design process.

Thus, we arrive at the position that a funsticntal task to be undertaken

in general systeo-s theoiy is the formalization of block diaErai concepts

using set theory.

Our purpose in this aerticle is to present such a fo'ralization and

to discuss a result within the framework of this fonuialization which we

have recently reIort'• [ 1 H. Nere; we shall attertD to make our rresent-.

Y04o-1-o" .;.3e shall bec. directly conce.lel with dOfeIinS the position

that our fo•-a.izat~on of the block diareran conceots is a reasonable one
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intuitively. Hence, we shall devote considcrable attention to the

interprotation of various mathematical objects within our formalism.

Another remark about our overall approach is in order. The block

diagrs concepts we seek to formalize (such as system,, input,, output.,

state, etc.) are very general concepts to begin witb. Their meaning

in engineering, while not completely precise, is reasonably well-

understood. It is possible, therefore, to proceed in an axiomatic

fashion with the development, i.e. to go from the general to the more

specific. To do so is both attractive and pedagogically dangerous I
It is attractive because there is associated with an axiomatic theory

a pomerful mechanism for properly identifying basic concepts. It is

dangerous because things become abstract. There Is, we feel, sufficient

uncertainty as to which concerts in systems %•,9#are basic that an

axiomatic approach is justified despite the abstractness. Moreover,

as Professor Mosarovi" has pointed out, the use of such a general

systems theory development in the engineering design process appears

to occur in a floir which goes from the less specific (block diaGram)

model to the more specific (detailed mathematical) model. Thus, the

theor7 mVy be of greatest utility if it is constructed a.,iomatically.

?Notati on

In order to render the presentation concise, It Is necessana to

assume some basic ideas fron set theory; namely, the concepts of sets,

functions, an-d rel.ttions =-.d the elementa-y facts about thvse.1 Moreover,

we shall use the standard notations regarding sets, functions, and

All of the esential •t..ctil is prescnted in chapters 1-3 of

Su rrs r •
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relations without introduction.

Some parýt•cular notations we adopt are the following: We denote

imit sets without brackets, ordered sets (i.e. r-tuples) with paren-

theses, and ordinary sets with curly brackets. If S is a 2-ary relation,

ie. a set of ordered par, •then the sats

and ~S -l I N tc): XZ:3

are1 xespectively, the domain and the range of S. Bere

xSy4' (xy)CS. In general, then, S S A5 SX 9ýS (where

DS ?-S - J(x,y) xS LS & yCl Si-) and, if S X/Ythen

bS~X and ASC'Y.

The composition of two 2-ary relations S and S' is the set

0a a)s(x, z) I(y) : zSy & ys'Iz37

whichis itself a 2-ary relation. From the definition, 5(S' o 3) < a 3

and I(S' o S)§Sf ' and, in particular, the conditiont-.S C S' implies

6(S' o S) ' S. If S, S', and S" are 2-ary relations, then we see

(S" o s') o s sit o s, o s)

In the case that S:X--:) Y and S':Z-) W are functions, (S' o S) is a function

and
0 S) =xj zx &:XZ S(x)C z'

Morvover, for all xe O)(S' o S),

(S' o S)(.X) t S'(S(x))

We shall r-eser-e the word, transfornation for a function which maps a

set into itzzlf. If f and e arc tra'atfor.ta.tons on the set 7, th'n

f(f o) = Y. lndec?-, if f:Y-? y ý and g:Y-? Y, thV- (f a E):Y-pY.

Thus, th" comipozition o, twro tr•-zsfornaticnz on a eet Y is a tranrsforý.-ticn



On T. Even more, the composition of two (ontol 1i; 1:1 onto)

transformatifns is (onto; 1:1; 1:1 onto).

F-inally, *f X and Y are sets, we write yX to denote the cLss

of all functions which map X into Y, i.e.

IX -f I f X -p-A

For example, if Y is a set, then T is the class of all transformations

on T.

Time Sets

:Recall our earlier stated position (iii) above; namely, that

"essentially all systems of interest in engineering exist and operate

within some reference-frame of time." This assumption will have a

major effect on our formalization of the systems concepts. In parti-

cular, it vill be through the explicit introduction of a mathematinal

representation for time that we put structure into the concept of a

system beyond that asserted by Professor !4esarovio in his article. Our

approach will be to introduce a special kind of a set to represent time.

Nors, to represent tiri1 in en neering models for systcems, one ordin-

arily uses one of the foliloine four sets (i) the set R of real numbers

(ii) the set R+ of positive real nwurbers (iii) the set I of integers

or (iv) the set 1+ of posi-tive integers. For our purposes, none of

these sets is actually suitable." In fact, to choose aV one of these

Is to lose an imuortant degree of generality. That is, to choose R or

R+ can at best lead us to the so-called. "contiuo-tIri ..... •

and with I or 1+ ve shall hae.' for.ialized only the "discl'etc--timc" !

eystcs. Fi th.:rm choice would S'VCrelv ub.:--:,e cut" cýdC;ý-vev.

set O:ich j,• no ..... to h-ve thc C .. .rni al f' tat ,
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and T+ share and which are important in representing tine. This will

allow un to discuss "continuous-time" systems and "discrete-time" systems

Ssiniutaneously, i.e. by Speeialiaation, we can explicitly eaiibit either

Cane. The essential. features of a time set apparently include (i) a

SaTmple ordering (the inequality relation K in the case of R, R+, 1,

and I+) and (ii) an algebraic operation (ordinary addition in the case

of 'R9 R+, I, and 1+). A concept conveniently satisfying these require-

ments is the concept in abstract aleebra of an ordered. group. Since

rkany of our readers may be unfamiliar with this concept, we repeat the

definition here and develop some tools to be used in our later work's2

An ordered pair of sets (T,+) is a grou2 if (+) is an operation on

T (i.e. if +:T X T-) T) such that (i) for all tt',t"-rT,

(t+ t') + t" -- t + (tV + tt") (ii) there exists sone OCE T (called an

Ident it,) such that for all tC-T, (t + 0) -(0 + t) t and. (iii)

for every tC- T there exists some t-1IT such that

(t + t-) (t 1 + t) 0 0. In general, it can be sho-rn tht thc identity

element 0 is unicue in T and each element t is unique given t. More-

over, if (1i,+) is a group, then for all t,t'•5 T, the identities

- t and (t + t- t=-'1 + t-1 hold.

For exa-iple, if G is the set of all 1:1 onto transformations on a

set AI then (G,o) is a group where (o) is composition or transfor.,,tions.

In particu-lir, the identity function en A (i.e. the set C0 =(a,a) I al.Aj)

Serves as id.nfitr in C anda if g- 0, then

which i• - -I 'et of G sizcc C is 1:1 onto A. Yore fa7'*.iar' exi_--1cs

Ofgoi' ar- (i) 2r (-n! wlh-'ý- it ftrx' ~tOf 1-Cal n'Lz:-bC-'s, I is

2
We fo~o~ Jo ..r ' '
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the set of integers, and (+) is ordinai-y addition of real numbers.

If (T,+) and (T',+') are groups, then a nap h:T--T' (into) is a

ora1oo•ohi if for all tt'CE.T, h(t + t') = h(t) +l h(t,). An isc•-

morphisn is a homoorphian which is 1:1 on T onto T'. (T2,+) and (T',+')

areŽ o t [isomorphicl if and only if there exdsts a homomorphism

[isomorphism] h:T-> T'. Thus, homomorphic and isomorphic groups are

sets which are algebraically similar.

A ver•y basic result from group theory which we shall use extensively

is the notion of the "Cayley representation" of a group. If (T,+) is a

group and tETj then the t-left translation on T is the transformation

et:T-->T such that for all V'&T, e (t') - t + t'. The .lev reDresent-

ati on of (T,+) is the ordered pair (CTvo) where (o) is composition and

CT =ot I tGT. It can be p:-oved in general: If (T,+) is a group,

then (CT,'o) is an isomorthic group t4]3 In particular, the narp which

takes t > )t is an isomorphism. It followrs for all tET, that (i)

0 ()-t) t (whence e0 is the identity function on T) (ii)

C -) and (iii) et is 1:1. Also; of course, for all tt'E T3

*~~~ t~t t *e C T s thus a set of 1:1 onto tran sorci~iticns on T.

Our fina l is to introduce the concept or 2- -roup w•th

a simple ordering and consider briefly the Cayley representation of such

a group. An ordered •r-ou_ is a grouo (T,+) together vith a subset UrC T

such that (i) the set Ij, 0, U1Ir is a partition of T, where

and (Hi) +:U Y, U -)U. If (i',+) is a Group crdered by U, t''n the relation

(() on T such tha.t
on~ T
• <, t>'" + t,)•. u, (j, t'i,•'3

v -a t • - (,i r<, ri t t X 4 11 > t , (i i) t t , t , t, , '< t



and (ii) te<•',•(" + t) e(t"+t') for all ttj,t"ET. T £
Thus, (-) in what is termed a left invar~iant, simole ordering- of T [2].!

Now,, if (T+ sa gr'oup ordered by U, thien the Cayley 1represent-

sti on (CT~o) isordered by the set CU = le t In this caset

all of the transformatione etE CT Ireserve the ordering (<) on T.

In fact, since (4 is left invariant, for all tt',V"•cT we have

t t , 4 ( t + t,)< (t + ,,)%(t,)<C(t,,

Thus, CT is a collection of monotonic (i.e. order-preserving) 1:1 onto

transformations on T. Wor, if (<) denotes the ordering of CT

Induced by Cu, i.e.

te ' et, ((et)- 0 et,)IcU

then we have t<• <• t• t, NCIT)

In fact,

t< t'<,(t + t')c- u&ý-> et- 1 tE C <$Ž(et-l o 0 ) :C

Hence, the isomorphism h which t kes t--> c is also ord-rcscrving.

Such an iconorpbis: iE called an ordel-isomnoroisn [3- •

Of cc u'se, "1two inoortnt. exý:ý,ples of ordered grouts, aeo (i)

the additive groutp of real n.e.s (R,4.) hitbch is ordered by the set

of positive reals R+, and (ii) the additive group of intvz-srs (I,+)

which is ordered by the set of positive integerz 1+. In each case,

the sinple o .dezin7 incuee is tlte ori0iria7 strict lnequality relation

<. Thus, oe see th-t the conrcept of an ordered Eroup euczmszes all

four of t- uý''1 ti" sŽ":; It is to n .ote .... ..:•,•

dj~fc'.-nt .... ro!r.• ~%y -i + a'e J+ in t1-e earenht oi' e' or~½rod

group ty-V' R a•nd I pi"4ly



General Time Systems

HencePorth, we can deal straight on with the formalization of

block diagram concepts. Our first task is to set do-n a woixking

definition of a general time system (which the reader will recognize

to be a specialization of Professor Itesarovic's definition of a system

as a general relation), Having elaborated on this definition somewhat

(in particular, having carefully identified in systems theory terainology

our interpretation of the various sots associated with a general time

system), our approach will be to a--iomatically develop the concept of

state for our systems. As in [13 , our main point is to. show that states

and state transitions in systems theory arise naturally in an exceedingly

general case. In fact, the only aoxiom required is the property of non-

anticipation, Since one is not far wrone to equate non-anticipation

of a system with its "physical realizabilit-y", wre thus inAfer that all

physically realizable systeos have states and functional state transitions

and, even more, these state transitions obey a well-known rule

(called the "scoi--roup" property M.1 ). •!ore explicitly than ._e were

able to accomplish in 1 , we demonstrate that the state concept in

systems tleCOry is col-.,lOtely interoven fdith the concept of the

evolution of an -nput-.outjut relation (i.e. a system) in time. This

would seco once and for all to justify the study of states and state

transitions in syste.ms theory as a e:oans of analyzing ho-w a system will

appear at vazrous future "nstnts of time.

We procecd to our i:or?:in3 definition of a Eencral tir-c sYstec.:

Hence forth, let G (T,4,U, 4) be an ordered Croup, i l. -t (T;+) be

a gr, out o0.! 2 rcd by the •sub3.t U and let (K) be t*. -i,;•.le othI~rir. of T

Induc-d bv. t. I- n is a no'itive. int-.cr Pd 2 , ) s an

n-tu1,me, of .e.ts, tlh .- a non-c7ý,-ty rel-ition SC (AC AJUx .,o X A
U2 n

in~ an ni-az:G-r,'_ '~r



az. (X) denotes Cartesian Product, if S Cý:(A UY AUr( .. X 3A

ia3 a 0-system, then tho set-s A:j~.. z are called spaces of Sf the

net Uis the time set of S, and the identity elemenet 0 of T is the

starting ti3.me of S. n is the degreýýe of' S. A 0-system S is discrete-

timie If' (T,-&) is oiae2-isomor-phice with the add~itive group (I,+) of'

integers. It is c-ontinuous-time if (Tt+) is order-isomorphic vith

the additive groaup (RI+) of the real numbers, Evidently, no 0--system

is both discrete-time and continous-time,

Lot S be an n-ary 0-system. If I i!•-n, then the i-th

_projIect~ion of' S is the got

S is im~proper if

S 1'SXA 2~ S x . 1 S

Evidently, if' S i a an -n-axy G-sysstora and 1 a n,, then 1~S is a unary

0-sfstni.In gencral,

S1  S '

Rinally, evei-f unary G-s~rstreý, is improper.

Thus, ve pro-poze the n-a7r, G-systen as a fonialization of the con-

c ep t ol' a general tivan iyste-I. In doinr& th.s, we note (above) that

n-ary' G-systcei-m cz~n b-: co:'tinuous-ticic or discrect-time if we specialize

the order-d :roup G a!pprc-, z~-I ny. Firnally, in idnntirfdri 0f th- clansS

of' 5n.1-io-cr n-zoy G-j-'.,we distinC-aish that subclass whiosc clemcnts

are trl ;if l in a di lzct.W,2 rcarkl tha~t the condition

3 ~ X C ~ h ~2 :ihp-~ee ~i:ir

I5



S=- 1 s SX 2 sX ... Y, - s

(i.e. that S is improper) always bears the interpretation that the

sets S are "Independent" of each other (with respect to S). This

is a useful concept to be able to formalize.

Time Objects

Ve can by specialization of the concept of a genoral time system

arrive at Professor Mesarovic's concept of the "objects" of systems.

In our case, these "objects" are "time objects", i.e. sets of

(generalized) time functions. We define:

A set V is a 0-object if and only if V is a unary G-system. If

V is a G-object and vC V, then v is a C-time function. Wvidently, then,

a set V is a G-object if and only if V is nonempty and there exists a

set A such that V! AU v Iv:U--?A. A G-time function is in fact

then a function and, in particular, a function with domain U. Nows if

S is an n-ary C-system and l<i .nl then-P. S is a 0-object and its

elements are C-tirac functions. Thus, an n-any C-system is a collection I
of n-tuplcs of C-tine functions. I

Time objects and their elements can be "coiposi te" objects or eleents,

i.e. they can somctrines be reduced to components: Lot V C AU be a 0-object.

If n is a positive integer, then V is n~-a_. if and only if there ex-ists an

),.. A ) such that

A A I , A ' A

In other words, a C-object is n-a~y if its srace is a set of U--tur.es.

fl is th, dir'enOiOn of V. If AlJ A X.A 2 X ... X An an d 1 i4 n, then

the 1-i-T c~n: cr A is t*hec funrc-t5 on eA:A. -,A suhthat

a.A
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If V is an n-ary 0-object and VCV, then the composition (cA v) is,

the i-th component of v. Also, the set

i.

Is called the i-th component of Vý (I• - n).

Evidently, if V S (A, XA 2 2 ..X X A is a C-object, then

c1(v)C- Au. Hence, Ci(v) is itself a 0-object. 1.•owr, ci(v) may or

may 32ot be a unary 0-object. For example, if V S (Y< (P2- X A2x A3),

then C2 (V) is 2-ary. 4  Finally, in the given case, wre note

(oý o vr):V-)Ai and for all t, CtU,

1(o o o o v)(t))

Hencce the concept of the components of a G-time function Is no different

than the concept of the components of any other function.

A Duality

As may already be apparent to the reader, there exists a basic duality

between the concepts of an n-ary 0-system and an n-ary G-object via the

notion of components of functions. This is a useful dualiy for some

pulrposcs. Ire indicate the duality by defining:

If V C A" is an n-a~t C-oobject, then the dual of V is the set
S iA 0 'C 1'1CA 0 v) I Vc'•V"P

s f(c~ or; c• orv,..., o)

Clearly, if V C- (A1 I'< A2 X ... ;( I then S •-- U A2 X ... X AnU.

Thus, S is an n- z ;a G-cyf-tvno Also, for all i (Iýi<n),

£i S ci(V

Now then, evidently, cvc-; n.-a:r G-object thus has a (uriqvo) dual i:hich

4 The Un:) JL ty o' ti.,,. d i-cns on of a C-object tl,.m:- ¢cc-,s 3 c:mn to tlh
fjct . -- tt of s.ts is not am a !-n.tiv; _
See S :.7•, 0"2.- cit.,I
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is an fl-axy G-system. The converzo is- also true. That icy if S is an <1a
n-ary G-system, then there exists a unique n-ary C-object V such that

3-Dual(V. In fact, let SS X .. X AUbe a 0-system.

Then,, if s .• (ss 2 ... , 1) S, associate the map vs:U- (XA 2X... , A)

such that ((
V S(t) ,, 5'3s(•,-,(),(tcU TO

and let
V i~~sc& i

Then, S Dual(V). Thusy there exists a 1:1 correspondence between

the class of n-ary G-objects and the class of n-ary G-systems associated

vidth a given space re'lati on A4;A,) 2An

Inut-outut Systems

With the above preliminaries out of the way, we can begin the

axiomatic development of our formal concept of a system so as to make

It appear mcre arnd. more like the mathematical mode]s of real systems

which we dea! with in enginoerixgo One of the most important problems

in general systems theozj Is the investigation and delineation of the

priIlciPlo of cause-and-effect as a promise underlying the behavior of

resl srsts.... Our foialjzed concert of a general tine systcm, the

n-ary CG-systci,13 is not revealing as it stands of oause-effect

(inpdt-ott,; utr sti uul-:'sponse) behavior except by the most liberal

ifter'-'ctAion. This is doljbertely the c-so. Ry starting in an

ex-treriey rnerA. se vr-up, . allow ourselves the frecdo-7, of azn adiomatic

intro-!uction of for:ial prorcrtics to render our syste.o r.tore eŽ' nore

Interretble as caus"--cffect (or ar Zadch C51 puts it, oriojted)

enti ties. In -.n proces, we c7: tVeo'i.*c about the "uriv '-i'!ity" of

ihe firc:t ,te. in ou0, de-ýr.ea"Lon of the .. -. L-d--cffect idea
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in systems theoxy is to specialize the n-ary 0-system to the "input-

output system" and establish a second duality concept; namely, universal

representation of general time systems as input-output systems. This

is a matter of introducing the concepts ei "inputs" and "outp.uts".

The basic methodoloey we employ is dne to ,csarovi [161.
If 0 ir. sa ordered group as above, a C--inut-nptem is ally

2-ary 0-system, i.e. S 5 A( X BU In this case, the 0-objects AU and

11B are called, respectively, a cause object and an effect 2o bet for S.

The set A is an input _e and B is an output space for S. The sets

(which are unique for S) are called the input set and the outout set

of S. In eeneral, if S is a C-input-output system, then

and 5 V3X SXR S

i.e. an input-output system is a relation on its input set e-nd its

output set. Thus, -,c s.. y one of the basic positions (due to

Yessarov5c) which ie stated. at the outset.

We next"fon.cali:4e the co-ce-t of a multi-varInale inu.-Uoutput

',ste;n );hich is perh'F_(,s t'- moest f'nd-ar•n•etal of the bIco' dia*ra I

concepts: If S is a G--in!;ut.*utput then S is sir 1e-variable

if and. only 1f both CVS and, PkS are ulw:.r C-objects, If S is not sin1lc--

variable-, it is '. Thus, ulti-varial

S - (" .4 A "' A x (:•._ x 2  .F 2 Y ) BU

w-here cit¾ ;r > ' or /-l or both. If



S (Ap A 2 X *PX P) (BI~ 'B2> X < is a (possibly'

tingle-var.iable) G-System, then the set C (5) is the i-th input pr

of s ( i <8 n) and the set C (IýS) is the j-th utp.ut port of s (:Ij zn).

S is isolated if and only if

Dua1(z&s) - C. PS)?K C2 (sX..(c.

S is non-cohesive if and only if

ual(P, S) C1 c(1? s) x C 2(-S) x . =(S)

It is im.mediate from the definition that every single-variable G-system

is isolated and non-cohesive. Moreover, we see a multi-variable C-system

S is iso1~toE [non-cohesive] If and only if Duaal(h6S) [.Dual(-RS)]is

an imrpropor G-systen.

Our inteo pl -;.tion of the property of isolation is, of course, that

all of the input Tiouts of the system are "independent" of each other.

Similap'ly, non-cohesi.on is the proptrty that all of the output ports

are "indcponCent" of each other, Cohesion and a &.ul-aber of other concepts

related to the concept or 4nýeraction are disoussed at length in the

companion paper by L,. Birth,

IWe consider next toe o -estion of whether or not in sone definite

sense the irnput-output systioss arc "rich" in the class of general time

syst-e:!s. We fozr-nli-ze the iszsu• •ii.th the follo-.inZ defirnition:

Let S 9- AU>, BU be a C--Giut.-utput systcm with A : A I< A 2 > ... X An

and 3 C B1'' .2.% .. I" :f S, is a_ (n+m)-a=y y.t-:.i, thcn S is

PnI•-1zt-. -o., ....t. tor, for S' if and ony jif
AB A A c 013

Sy (C 0 <,C 0o. A X/ o 0 B Y9 y)Y) S'

No-;, t it a c . " .. ... _

of .,i fnct i , '-.:' x'' in 62 . Tr. iL :is s .. " c6o :in
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a cause object and. an effect object for the representation cy-stem. That

U . USI,. if S £ý A,1"X A2 X ... X A I ito choose somie inte~er mn (I< r:1(n)2 n

and set A ýA, YA2 X . A Mand 13A M..1XA M XY X A.n Then,

the relation SI AU; BU such that

XS lyc (c1 o xIc? o XJ q o XIC~ o y~c~ 0Yo .P y*, 0BO)

is an input-output iepresentantion for S. Thus, in the sense of

representability, input-output systems are, in fact, "rich" in the

class of general time systems. For this reason, we can justify

restricting further attention to input-output systems. That is, if we

do not disa~llow the multi-variable case, then our finding In an

import-ant sensc shall be valid for the class of all1 n--ary 0-zysteus.

oeratioens On Sy stens

There are a number of different ways in which systems can be

comb-Incd to yield other system.-. In the cane of intput-outjput syztem,ý,~

these ar-ise In two distinct wazyr., (i) throuv!i interconnoctions of

vytratsch itn the eerier;, liavtllel, and feedback interconzicct-ions, T
and (ii) throt--h fa S:igthe evolution of a given systemn- in time,.

Intercorinr-ctions. of cyste:.,,s, of couroe, are primary concepts, in the

block dI:ft:':-n dc. irir'ticn of systerms. Tihe latter conceypt is not. In

this scetlionL1 we s'h.ll fouait~:-;e, the serles intceronnection of systems.

and the- conc'mtl of "sc~oir"a Civen systen (which is (ii) above).

The parctl)el and Lebckintc:rconnecticns, can also be fo~n..,!lizcd for

G-riut'e~'tr~rstcn,., bu-,t play no role in our dec.Yco1,ient of the

co~ncept of sý67tat; hence, he aa: not needed.

Let ut ir; 'd:; or.ev; to tl!e- concr~pt of the -ý :

oP lel AA-- -

be! 'i:. %n,! :x (a:. b, 'o,~ I r 0 T IP 4U, < ) b a v. gen o Tr,,;d

fgroii;-. The-n, deii j o br!I~ ci ass. of ,!I 0-input--out!'ut y



-16-. [
with input space A and output space B, i.e. let

Then, if S and S' are arbitrary G-input-output systems, Czz. the

sex-Ies interconnection of S and S' is simply the composition relation

(SO o s). Thus, if S! A11X BU and S' -_ C 1 X DU, then

(s, o s) •_ AU A DU. In the particular case that A - C and B3 DO

(SO o s) _ AUX BU. Therefor,, for all Ss' <., (s' o s)<d .

Thus, the class 2 of input-output systems is closed under series

interconnection.

]Now, actually, for proper interpretation in the en ineering contexts

we must qualify the definition of series interconnection slightly.

This is bccauceo engincering systems must generally satisfy an Inter'-

connectability condition; namely, -f-S 5 ADS'. Thus, we formalize:

If S and S' are 0-input-output systems, then the series interconnection

(SO o S) is yor.rýE if and only if KS 5 Z S'. Clearly, whenever (S'o OS)

is a proper series interconnection, then (as we noted above) f
The concept of "Ectioiing'" a given input-output system s seone-

what more difficult to forialize than the notion of the sceries Inteor-

connection of bystens: If SCI and t,-U, then the tnorialized) t-section

of S is' the rolation

s•. (X 0 e¢, o -'t 0y Y !

Y W~ I. i" t, } t !

and e T j 1t t1'--left % t'r's! .1 on on T. Alro, if Sl ý , define
tO.

S V'.11rt 0 is S~ i r.ti, 1 f 4 .
0



i " - "1"7--

)rNow,.)x% = C t t t("') . Therefore, since x:U.-) A and Ct T- T:

and e is monotonic, it follows that (xt o et):U-)A. In fact,

tt

t= 1'6 T & 0< t'I 4--> t'C- U

loaf 9(Xt 0 t) .U. Similarly, we see (yt 0 et):U- B.. From this,

It follows that

St4 AU BU

Finally, then, for all S C and all t U, st CJ () In words,
S

S is that part of the system/defined for time greater than t shifted

backwards in time to the starting time 0. Under interpretation, St

is what the system S "looks like" starting at time t,

Now, from, the fact that S.4, there evidently exists a function

,7r .3 K u -•.[ (where , u o) such that

s t) st

We shall call 7s the motion "-in N )}ow, very importantly, It

c=n be proved that 7, satisfies the following proporties; na.JcJy,

(ii.) jr(sjt + ti) .. •-(;"st),It, (sC. • t~ti.E --

(The coOU11ioro (14) is of co.1 e,_uival.nt to S , (st)t.)

Thus- , th.e notiort 7 is alwtis available for characterising the

"l"cvoluti on" of an input.-out1rut sys ten throxlg'h time. IV can be seen that

this notio:n is inportnt coinc•.-ptunl.y in.engineerin-.

The operatio ns of E.terlez interconnection and sectioning are not

unrel.%t•.d. Th•t J.., if S a' S'Z/ , then for all t:fU,

(s' o S)t S,t o St

In fact,

. .. . ........... m....m..



0o s)y)-> (-u)(-v).us, o S)v & u 0 Ot 0

0 u(3v)(3•): u•, •.Stv & x = ut o0 e & 170 e c
<•- (-1,): •st~wt o e%) & (,,t o c)s'¢: ,
4=:> 30s, o st)y

TDhus, the t-section of the series interconnection of two systems in

"is the series interconnection of the t-sections of the systems.

Finally, then, on the class of 0-input-output systems J I we

have two basic operations; namely, (i) series interconnection

o: dx • -- 2 (which is a semi-group operation) and (ii) sectioning,
.1

i.e. the motion IT: J X U--?! (with (U,-) being a semi-Croup with

identity). Pinally, these two operations are connected by the

conditions

() ' (s,o) S sI(ii) ir(s,t + ti) Ilr(7r(s,t),ti

=• ~(I~I) V(S, o Sit) 0(,t o•(Ss~t)5

Won-Ant c'nto. Piunct ons

Porlaps the tiost fundamnontal property of input-output systems

Is the prCqorLy, of non-anticip'.tion. ptouh1y epor.:2ine, on- Input-output

syst•cn 1E non.-anticipatory if the "proeent value" of an:y outp-ut of the

systet.i does not depend on any "future values" of the coni-c:pondinr.

system input.. This property is, of courzse, .n Intuitive one viell-.known

in engineeri.giZ, The Sniportanco of the concept lies, Sn the fact that

non-antici-P..tion is equa.tible with (or at least a nec=s-.,c condition

for) the "py1sical re-a!izabj.ity" of the system. Of couU-;-,-, a better

vE' to say the sa!ý,e thine jS: Non--anticpation in a prolerty which is

aIorio;t uv!, i v' I y v'.-Id o-': tlhe e I !;ns of : 1thn r,' e•-I 1o, S I o::leya

A t
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to doescribe real physical systems.

Now, in attempting to foma-lize the intuitive concept (above) of'

a on-anticipato-y srysteni, we encounter an inmod.ate problem. The

.above statement of non-anticipation implies the systeon is a function;

yet, this does not seem to be a necessary condition. Hence, a non-

trivial task is to formalize the concept of a non-anticipatory system

in the case of input-output systems which are not functional. We shall

here solve the problem by carrying out the functional cate completely;

then, in the light of the results, we shall propose a definition in

the non-functional case. 6

Proceeding with our axiomatio developnent, then, we define: If

SEJ, then S is a non-anticivatox-i function if and only if (i)

S is a function, i.e. S:BS9-)iS and (ii) for all xjx'LS and all

rc U,

where

Rcgardlin this definition, we realize that condition (it) could be

rep!.hce. bj the ecuiv,-•ert conrditiion (ii') foý' all x,.'C,ý'S e.'A

all tE U,
,t x•t ,•o • xo "•- (s('))o

As we h-ve previously ittcd, it tu'ns out that non--•nzLici tation

._, the a:' c,•tic cc.-..-:c•o;:e ~on w"ich th• eonce2t1 o01 st.zt. in sv-te::,.;

theeory c--' bc .ov.,. ',t b"jn to m': clea-" this fe.ct wl;-en we ex•a-rre

the clo:ua:e rr'o-e ,t_ ; of t½- o'.:er:tti¢,:rs on~ S-y. i' - 'ev-o'-._'- •u :ou,-e

• -n [ . ..... . :.. . . -.3- .... ~ j.. -,•V*-:- ... .,
jr.~V- on . " • '.-.::".,'t'" "o ; . e•:'- : ." '
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in the special case they arc applied to non-anticipatory functions.

Henceforth, let I/I be the class of all C-input-output systems

with input space A and out.-ut space B which are non-anticipatov$ y

functions, i.e.

r S S S AU X BU & S is a non-anticipatoxy functioni

Then, f

We note two things: First, if S and 3S are non-anticipatory

functions, then their series interconnection (s' o S) is a non-antici-

pato2ýy function. In fact,. since S and S' are functions, (S' o S) Is

a function. Moreover, for all xx'C- ,(S' o S) and all' tC U,

4 (s1 o S)(W)(t)= (s' o S)(X')()

Thus,(S' o S) is non-arnticipatoi.-. Yn particular, if S,S'C- 9 then

(s' o S)C. 71and hence, o: - 2 . Scoond, if S C 1Z d.t C U,

then St need not be a non-anticipatoiy fwuntion. In fact, we readiily

see that. S is not uven z. function in gCeeral. Thus, we find that the
t

s cot: o.s of a .on-o'ticipo-.-.1o3, fuunction are in general antic 2iltorVJ

Ai firSt, this is bupteling .ut a bit of further investiCUatien un'ravels

the ytrjz ,ý-. 'We defi'nc:

If S is.a ..... _ . t.on, if xC CS, B aE, t U, th-vn the

YE-cc~ of S s thc. rolation

tt t

Also) fo:" '.l 3:E .Ž3, o = S. Then) ucfl-j the}:.

as c:c J b in i Mt''o '-- Sect octc of i snjst.n, "e fir:-1
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Hence, if S(!f, %c,G q , anld tE U, then st 2. 110!Cr imaporta~ntly,

it can be proved that 5t is a non-ainticipatory function. In other

words$ St'l . Finally, we note
u

S US

and, hence, we find tlat if S is a non-anticipatory fun'ction and

t C U then St bas a natural decoumpo- ition into non--anticipatory

functions; namely, the aet

Now, from the fact that Sx C-1 V it follous that we can construct

another function (similar to the uotioni of s) which describes the

evolution of a non-anticipatoxy function in terms of its non-c.niicipatory

U -K appearalces, First, we define the relation D 2 7X A X U such that

Then$ there evidently v sits a functiont':D-eiW such that

r(S,x,t) =-s

T we shfll call the brachLinv -- in ' .Very inportantly, It ca-n-- be
provedý 4,01oin p2o-!rte th ..... os l-l t

images of 7' are definead:

(i) 't(S,:c,O) v $

(.i) ?(s,:.,t- + t',) :,r(r(s,:,±,+),=N o ',

(The Co0. •- C c (ji;) 5s of c0u!, eCuiviVlent to S " )x t ,)(titt0t .i
forn - ....... -.c• - y ci.f c , S. e boz:ch•, in is

.t, : -, ?'?,.. for 7:.a : t-.e C.vob,.itio - of S irn ti .: in t*.:rs 0 r

n----" " " ~ - f"-.'2ctic. ..
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The Conce-ot of State

Faving exained the non-anticipatory functions, we wish to set

doin a definition for a 0-input-output cystom which is ron-ant~cipatory

but mot a function. In the light of the foregoing, it is natural to

define: 4

If SE t then S is a non-anticipatory system if and only if there

eidsts come non-anticipatory function S'• A4 and some tC U such that

S s

In vords, an input-output system is non-anticipatory if it is a section

of a non-anticipatory function. Under this definition, we note every

ron-anticipatory function is a non-anticipatory system, i.e. if SE It

then (trivially)

Jes, very inpor rntlyl we discover that under'this definition

non-anticilpato-y Systems hI.ve states and all of the usual ne.chinely

of sltate tiansitions in systems theory T51 :

Let SE&J be a non-anticixatory system, i.e. assume S 1S, wheret

S'EP?. , Then, the set

~s a rt o~ Tii 1 Est,%tc- for S. Clearly, 17~ ()~1 an a

•-nd, frci the la.tter-, it follows that for all C . a y a!?

The t

'.'-_. Z ~t L. >,_l ;: .:. I i-'s,(t) S 2{';, a"d, ,
cve-. j ,"~ •n" .t • st'.... of S iz a rt'te zf S.
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From these definitions, we see (i) Pveo.-., state of a non-anticipatory

system is a Von-anticipatoxy fuLmc'in !ii) a non-anticipato27 function

is a non-anticipatory system with prcciscly one initial state nl (Mii)

a non-anticipatory system is an input-.output system which at sons earlier

time had precisely one initial state,

If SC is non-anticipatory (i.e. S = S' with S'C17 ) and t1CU,

then StC 4 is a non-anticipatory system, i.e. every section of a

non-anticipatory system is a non-anticipatory system. In fact,

s (s,)ti t+(s'I

Yoreover, then, the set

fl 5 ,(t + ti) tjS%+tj ',

72tis a set of initial states for St 1 o Also, Mc,(t + t') I t and, in fact,

, = -U is,(t + t1)

Now; using the property that S xt o Ze e that

f5(t + t') If', f C s,(tW &xc
Thus, the setIt cansbe that utdl

Thus, the sct fS,(t + t') of initial states for St, can be "conutc"

directly, fron the set fs,(t) of initial states for S.

If S is a non-anti ciator; yvstem as above, then the branr.cin.

in : is callcd a state trarhiton fnetion for S. As c noted befo2e,

T has the proporties,

(i) T (s,X,o) S

(ii) xot - ,,ot Z•- '(s,.x,t) *~,7,(,Yt)

f .... ..... . .b....... ......... "fnzi co:. A1so, bv ( i) , c... ~o~ ~~~-
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Lam;ay, the functi on fj :3)- lB such that

S(x)(t)

That is, in Conei-all, it ce-n be provod: If (Sl-ilt + t')C D, then

S(X)(t + to) S"(xct o 0 )(tt)

Th-ýireforcj the function G- has the property

G(S'x~t + to) =acr'Z(Sojt),x~ 0 etlt')

for all (Slylt + tt)C.D.

Summarizing, then, if t is a ton-anticipatorf system, then

there c;:ists a subset 171CZ a relation D 4 ý A Y~ , an d

two r.-'.ps '1:flD~ and D 1-B such that

Mi x~y 0 0(?v)(t): y(t) =c(j~) (:cC itELI

(ii) Gr(f,,,t + t') .45 t(fYt)$xt 1 etit'), (f-c Z)

11hus', cvery non- an-ticip=-to2y system 1i~-- a set of initial ctuatou, a set

ofs-%,,, a'state tira'ýsiticon furctluon, anid an output function.

This a.'chY~s b-ýLi su'Dported b~r the Office of xl sac

eom~.c r~. c:' 1411?)an~by the Nation;,1 ScieŽnce F'ouniýtion

g-r-ant no. 0,-.-!?-.1i
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